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An understanding of eigen theory can provide students with powerful ways of 

analyzing and understanding systemic-level problems in many areas of mathematics, 

engineering, and sciences.  Most mathematics, engineering, and physics majors will 

encounter eigen theory at least twice in their undergraduate career: in linear algebra and 

in differential equations.  Research shows that students struggle to bridge their informal 

and intuitive ways of thinking with the formalization of concepts in linear algebra 

(Dorier, Robert, Robinet and Rogalski, 2000; Carlson, 1993).  While the work presented 

here is part of a larger study aimed at better understanding this bridge and informing its 

traversal, our goals in this paper are much more targeted.  In this paper we aim to (1) 

identify important aspects of student thinking about eigen theory that emerged over the 

course of the teaching experiment, and (2) discuss how these new insights will inform a 

revision of the hypothetical learning trajectory (Simon, 1995). 

Our project team conducted a four-week classroom teaching experiment (Cobb, 

2000) during the Fall semester of 2007 in an introductory linear algebra class for 

university undergraduates, most of whom are majoring in mathematics or engineering.  

During this time, each class session was videotaped, copies of all student work were 

retained, and pre- and post- interviews were conducted with individual students.  In this 

short paper we provide a retrospective analysis of some important aspects of student 



thinking in the eigen unit, and proposed revisions to the instructional sequence that were 

informed by the insights we have gained through this analysis.  

Theoretical Framing 

The instructional design of our eigen theory unit draws upon heuristics from two 

compatible theoretical perspectives:  the Models & Modeling Perspective developed by 

Lesh & Doerr (2003) and the instructional design theory of Realistic Mathematics 

Education (see e.g. Gravemeijer, 1999).  In particular, the overarching instructional 

design of the unit is guided by a hypothetical learning trajectory that begins with an 

experientially real starting point and aims to help students build a new mathematical 

reality in which eigenvectors and eigenvalues come to be meaningful objects in and of 

themselves.  We define a Hypothetical Learning Trajectory (HLT) to be a storyline about 

teaching and learning that occurs over an extended period of time.  The storyline includes 

four aspects, all of which are reflexively related and revisable: (1) Learning goals about 

student reasoning, (2) A storyline of how students’ mathematical learning experience will 

evolve, (3) The role of the teacher in the storyline, and (4) a sequence of instructional 

tasks that students will engage in. In our view, a HLT is primarily a tool to be used by a 

research team interested in studying one or more of the four aspects that constitute a 

HLT.  The creation of the HLT is guided by our intent to help student develop 

increasingly general and formal ways of thinking about eigen theory. 

Important Aspects of Student Thinking: A Retrospective Analysis 

A major goal of our teaching experiment was to explore the ways students 

approach and think about the following basic question about eigen theory: “For what 

vectors v and what scalars λ does the equation Bv=λv have a non-trivial solution?”  We 



would like to clarify that this particular framing of the question is offered here for the 

benefit of the reader (mathematics education researchers and mathematicians familiar 

with eigen theory) – obviously notation and language had to be developed with students 

before such a formally stated version of a “basic question” would be meaningful to them.  

In the teaching experiment, we approached this basic question by first giving students a 

real-world Models and Modeling task that was an adaptation of a fairly traditional 

stochastic matrix problem. This problem, when modeled by iteratative multiplication of 

the stochastic matrix by an initial state vector yielded a sequence of vectors that 

converged to the steady state vector of the system.  Thus our framing of the basic 

questions involved a generalization from the notion of steady state vectors to the notion 

of “same-direction” vectors yielded by matrix multiplication.  Our ongoing analysis aims 

to examine the ways in which our framing of the “basic question” contributed to and 

constrained students’ evolving conceptions of eigenvectors and eigenvalues. 

In order to anticipate and make sense of student thinking with the most basic 

questions about eigen theory, we knew that it would be important to have a sense of the 

ways in which our students were conceptualizing the mathematical objects and operations 

relevant to these questions (such as vectors, matrices, and how they interact). What we 

didn’t (and couldn’t) know prior to the teaching experiment was the ways in which these 

ideas would play out during the eigen unit.   

In this section of the paper, we will discuss in detail one idea that emerged as a 

central and powerful way in which students came to reason with and about eigenvectors 

and eigenvalues.  This idea has to do with the relationship between the determinant of a 

matrix and the dependence relationships among its column vectors.  We anticipate that 



this particular idea and accompanying inscriptions will be central to the RME design 

heuristic of guided reinvention and emergent models (Gravemeijer, 1999).  In particular, 

we will address the how this idea evolved with regard to classroom activity and 

discussion, how it developed in the context of the eigen unit, and the ways in which this 

will inform our revised hypothetical learning trajectory. 

In our work with students, determinants were first introduced as a way of 

measuring the area of the image of the unit square under multiplication by an arbitrary 

2x2 matrix.  In particular, students were asked to find an expression for the area of the 

image of the unit square when multiplied by the matrix 
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Figure 1. A student shows how he found the area. 

After finding this area, students were asked to make predictions about the area of 

the image of a unit square when multiplied by a 2x2 matrix whose column vectors were 

linearly dependent.  This helped students to develop a visual intuition for thinking about 

the equivalence of the determinant of a matrix being zero and its column vectors being 

linearly dependent.  Nearly a month after this introduction to determinants, one student, 

who we will call Karl, explained his thinking about how this idea connects to eigen 

theory: 



When you look at the, uh, vectors, what does the determinant give 

us?  It gives us the area between any two given vectors.  And if, if 

our determinant equals zero, that basically means that the vectors 

that we’re solving for have no area in between.  So therefore they 

lie along the same line.   

As he spoke, Karl held his hands in a v-shape, presumably emulating two vectors 

pointing out from the origin.  When he made reference to the determinant being zero, he 

made a motion of flattening his hands together to indicate that the two vectors now lie 

along the same line. 

 This type of reasoning lead us to believe that it might be more intuitive for 

students to first think about the process of finding eigenvectors and eigenvalues as one 

whose goal is to find those vectors such that their image lies along the same line as the 

original vector – and that these vectors could be found by forcing the determinant to be 

zero.  

The “Basic Question” Reframed 

As part of our ongoing work to revise and refind our Hypothetical Learning 

Trajctory for the eigen theory unit, we conclude by offering a reframing of our “basic 

question” of eigen theory, which we think may better connect to student thinking (see 

Figure 2): 

` 

Figure 2: The “Basic Question” Reframed 



One thing that we would like to highlight about this reframing is the fact that it is 

posed as a question that no longer starts with the assumption that input and output vectors 

point in the same direction – we believe that this may provide more opportunity for 

students to imagine motions like the ones Karl made with his hands when making his 

argument about how he could force two vectors to lie along the same line. 

We anticipate that if students imagine that these vectors v and Bv lie along the 

same line, that it must be true that det [ v  Bv ] = 0.  Computing the determinant yields an 

equation that is quadratic in both the first and second components of the vector v that, 

when solved yield the equations of the lines along which the eigenvectors of the matrix B 

must lie.  Such an “eigenvector first” approach has also been documented to be more 

conceptually accessible to student in Differential Equations (Rasmussen & Blumenfeld, 

2007). 

For the benefit of the reader, we offer some elaboration of the method described 

in the previous paragraph: Using 
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Therefore, if we have a matrix B (so we know the values of a, b, c, and d) we can use (*) 

to find the values of x and y.  

 While it is possible to generalize this method to the 3x3 case by choosing as a 

third column a nonzero vector that does not lie in an eigenspace, this approach quickly 



becomes cumbersome as the size of the matrix increases.  This provides an ideal 

opportunity the teacher to introduce the conventional eigenvalue-first approach.  Indeed, 

by this point students will have become somewhat familiar with both eigenvalues and 

eigenvectors, hence we conjecture that finding either first is sensible since they now have 

meanings for both. 
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